dimanche 18 décembre 2016

Triangles égaux, triangles semblables


Chers amis,

je me permets de vous transmettre un article d'Alexandre Carret :


--- Citation ---
Comme je n'hésite pas à interpréter librement les programmes (grâce à mon bouclier de liberté pédagogique), je fais de grands arrêts sur la notion de démonstration géométrique :

en particulier, j'insiste dans un premier temps sur les arrières-plans mentaux - la vision du monde - construits et discutés par les hommes  (depuis les grecs pour faire simple) et qui les a conduit à entrevoir les notions de cause, de conséquence, de syllogisme, de science,  d'expérience, etc. (par exemple, je leur dis que nous ne discuterons jamais du "beau" en mathématiques.


D'une part parce qu'il s'agit d'une  catégorie mal définie, socialement, culturellement et temporellement  variable et d'autre part qu'il ne s'agit pas d'une catégorie à travers laquelle le mathématicien pense le monde (heureusement, nous ne sommes pas que mathématiciens) : je décroche alors des murs de ma salle "Cygnes se reflétant en éléphants" et "Drawing hands" pour leur expliquer ce qui m'intéresse dans ces œuvres tout en étant persuadé que leur professeur d'arts plastiques leur en parlerait bien autrement (1)).




Par conséquent, j'oriente tout mon discours sur la géométrie autour de l'idée que tout théorème est démontrable sauf les tout premiers que l'on appelle postulats :


Je dois un grand merci à Philippe Colliard de m'avoir ouvert les yeux sur cette liste et dans son livre sur le fait que nous n'avions pas, au collège, à être jusqu’au-boutiste (chercher le minimum de postulats à poser pour démontrer nos théorèmes) et qu'au contraire poser des postulats forts (comme les égalités de triangles) tout en disant qu'un jour peut-être, dans quelques années, on réfléchirait à construire le plus petit noyau de postulats.


Cette découverte m'a libéré : je ne cherchais plus, en mathématicien, à réduire le nombre des postulats mais en prof de collège à trouver le noyau de postulats suffisant pour ne pas avoir à rentrer dans des considérations difficiles (voire contestables : certaines démonstrations d'Euclide ont fait l'objet de nombreux commentaires à travers les siècles).


Les égalités de triangles sont depuis lors omniprésentes dans mon discours (par exemple, pour démontrer dans les deux sens la relation entre symétrie centrale et parallélogramme - alors qu'avant, avec mes petits postulats euclidiens, je passais vite là-dessus car la montagne me semblait bien trop haute à franchir pour mes élèves).


Je précise que, la plupart du temps, ces démonstrations sont exposées à l'oral, parfois écrites dans le cahier et rarement, je leur demande de me les reformuler. Elles servent plutôt à construire le récit que je tente de leur exposer sur la nature et la structure des résultats géométriques avec lesquels il faut se familiariser au collège.

A eux, je ne demande que des démonstrations plus simples car paradoxalement, ces théorèmes-postulats, bien que premiers dans la théorie, sont difficiles à utiliser dans des démonstrations en autonomie (contrairement, par exemple, au théorème "les diagonales d'un losange sont perpendiculaires" dont l'intuition est forte chez les élèves et l'usage dans les démonstrations relativement aisé - alors même que la démonstration que je leur en propose s'appuie sur des égalités de triangles).


Amicalement,
-- 

Alexandre Carret.


(1) Non merci, pas d'EPI là-dessus non plus !

--- Fin de citation ---

Merci encore une fois à Alexandre Carret, qui a exprimé (plus habilement que moi) ce que je pensais sur ce sujet.

P.S. Roland Dassonval a publié une démonstration intéressante du théorème de Ptolémée

--- Citation ---

--- Fin de citation ---

P.P.S. Mes sincères condoléances à la famille et aux amis de Rudolf Bkouche, qui a passé beaucoup de temps de sa retraite à discuter avec des profs sur Internet pour améliorer l'enseignement des mathématiques.


Amicalement,

-- 
Mathieu Morinière.